3.6.75 \(\int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx\) [575]

Optimal. Leaf size=136 \[ -\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {2 \left (a^2 A+3 A b^2-3 a b B\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^3 d}-\frac {2 b^2 (A b-a B) \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 (a+b) d}+\frac {2 A \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d} \]

[Out]

-2*(A*b-B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^2/d+2/3*(
A*a^2+3*A*b^2-3*B*a*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a
^3/d-2*b^2*(A*b-B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*a/(a+b),2
^(1/2))/a^3/(a+b)/d+2/3*A*sin(d*x+c)*cos(d*x+c)^(1/2)/a/d

________________________________________________________________________________________

Rubi [A]
time = 0.37, antiderivative size = 136, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 33, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.212, Rules used = {3033, 3069, 3138, 2719, 3081, 2720, 2884} \begin {gather*} -\frac {2 b^2 (A b-a B) \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 d (a+b)}-\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {2 \left (a^2 A-3 a b B+3 A b^2\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^3 d}+\frac {2 A \sin (c+d x) \sqrt {\cos (c+d x)}}{3 a d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^(3/2)*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x]),x]

[Out]

(-2*(A*b - a*B)*EllipticE[(c + d*x)/2, 2])/(a^2*d) + (2*(a^2*A + 3*A*b^2 - 3*a*b*B)*EllipticF[(c + d*x)/2, 2])
/(3*a^3*d) - (2*b^2*(A*b - a*B)*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a^3*(a + b)*d) + (2*A*Sqrt[Cos[c +
 d*x]]*Sin[c + d*x])/(3*a*d)

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2884

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3033

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Dist[g^(m + n), Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*(
d + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] && I
ntegerQ[m] && IntegerQ[n]

Rule 3069

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*
x])^(n + 1)/(d*f*(m + n + 1))), x] + Dist[1/(d*(m + n + 1)), Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f
*x])^n*Simp[a^2*A*d*(m + n + 1) + b*B*(b*c*(m - 1) + a*d*(n + 1)) + (a*d*(2*A*b + a*B)*(m + n + 1) - b*B*(a*c
- b*d*(m + n)))*Sin[e + f*x] + b*(A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + f*x]^2, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m
, 1] &&  !(IGtQ[n, 1] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3081

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3138

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+B \sec (c+d x))}{a+b \sec (c+d x)} \, dx &=\int \frac {\cos ^{\frac {3}{2}}(c+d x) (B+A \cos (c+d x))}{b+a \cos (c+d x)} \, dx\\ &=\frac {2 A \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d}+\frac {2 \int \frac {\frac {A b}{2}+\frac {1}{2} a A \cos (c+d x)-\frac {3}{2} (A b-a B) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{3 a}\\ &=\frac {2 A \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d}-\frac {2 \int \frac {-\frac {1}{2} a A b-\frac {1}{2} \left (a^2 A+3 A b^2-3 a b B\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{3 a^2}-\frac {(A b-a B) \int \sqrt {\cos (c+d x)} \, dx}{a^2}\\ &=-\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {2 A \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d}-\frac {\left (b^2 (A b-a B)\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{a^3}+\frac {\left (a^2 A+3 A b^2-3 a b B\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 a^3}\\ &=-\frac {2 (A b-a B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {2 \left (a^2 A+3 A b^2-3 a b B\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^3 d}-\frac {2 b^2 (A b-a B) \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 (a+b) d}+\frac {2 A \sqrt {\cos (c+d x)} \sin (c+d x)}{3 a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 11.54, size = 207, normalized size = 1.52 \begin {gather*} \frac {\frac {(-A b+3 a B) \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}+A \left (2 F\left (\left .\frac {1}{2} (c+d x)\right |2\right )-\frac {2 b \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}\right )+2 A \sqrt {\cos (c+d x)} \sin (c+d x)+\frac {3 (-A b+a B) \left (-2 a b E\left (\left .\text {ArcSin}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 b (a+b) F\left (\left .\text {ArcSin}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+\left (a^2-2 b^2\right ) \Pi \left (-\frac {a}{b};\left .\text {ArcSin}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )\right ) \sin (c+d x)}{a^2 b \sqrt {\sin ^2(c+d x)}}}{3 a d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^(3/2)*(A + B*Sec[c + d*x]))/(a + b*Sec[c + d*x]),x]

[Out]

(((-(A*b) + 3*a*B)*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a + b) + A*(2*EllipticF[(c + d*x)/2, 2] - (2*b*
EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a + b)) + 2*A*Sqrt[Cos[c + d*x]]*Sin[c + d*x] + (3*(-(A*b) + a*B)*
(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*b*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (a
^2 - 2*b^2)*EllipticPi[-(a/b), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a^2*b*Sqrt[Sin[c + d*x]^2]))/(3
*a*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(821\) vs. \(2(208)=416\).
time = 2.70, size = 822, normalized size = 6.04

method result size
default \(\text {Expression too large to display}\) \(822\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a^3-
4*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*a^2*b-2*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*a^3+2*A*cos(1/2*
d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*a^2*b+A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Elliptic
F(cos(1/2*d*x+1/2*c),2^(1/2))*a^3-A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(co
s(1/2*d*x+1/2*c),2^(1/2))*a^2*b+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(co
s(1/2*d*x+1/2*c),2^(1/2))*a*b^2-3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(co
s(1/2*d*x+1/2*c),2^(1/2))*b^3+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(
1/2*d*x+1/2*c),2^(1/2))*a^2*b-3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(
1/2*d*x+1/2*c),2^(1/2))*a*b^2+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticPi(cos
(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))*b^3-3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellip
ticF(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b+3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellip
ticF(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2-3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellip
ticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^3+3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipti
cE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b-3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipti
cPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))*a*b^2)/a^3/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2
)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*cos(d*x + c)^(3/2)/(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*cos(d*x + c)^(3/2)/(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\cos \left (c+d\,x\right )}^{3/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )}{a+\frac {b}{\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(3/2)*(A + B/cos(c + d*x)))/(a + b/cos(c + d*x)),x)

[Out]

int((cos(c + d*x)^(3/2)*(A + B/cos(c + d*x)))/(a + b/cos(c + d*x)), x)

________________________________________________________________________________________